Bihar Board Class 10 Math Solutions Chapter 13 Exercise 13.4

Hello Students and Teachers. Are you searching for the Solutions of Bihar Board Class 10 Math Chapter 13 Exercise 13.4? If yes then you have come to the right place. On this page, we have presented you with the Bihar Board Class 10 Math Solutions Chapter 13 Exercise 13.4.

SubjectMath
Chapter13. पृष्ठीय क्षेत्रफल एवं आयतन
Exercise13.4
ClassTenth
CategoryBihar Board Class 10 Solutions

Bihar Board Class 10 Math Solutions Chapter 13 Exercise 13.4

प्रश्न 1) पानी पीने वाला एक गिलास 14 cm ऊँचाई वाले एक शंकु के छिन्नक के आकार का है। दोनों वृत्ताकार सिरों के व्यास 4 cm और 2 cm हैं। इस गिलास की धारिता ज्ञात कीजिए।

हल)

दिया है, शंकु के छिन्नक के व्यास क्रमश: 4 cm व 2 cm हैं।
त्रिज्या (r1) = 2 cm तथा त्रिज्या (r2) = 1 cm
गिलास की ऊँचाई (h) = 14 cm
शंकु के छिन्नक के आकार के गिलास का आयतन

Table of Contents

प्रश्न 2) एक शंकु के छिन्नक की तिर्यक ऊँचाई 4 cm है तथा इसके वृत्तीय सिरों के परिमाप (परिधियाँ) 18 cm और 6 cm हैं। इस छिन्नक का व्रक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।

हल)
दिया है, शंकु के छिन्नक की तिर्यक ऊँचाई (l) = 4 cm
एक सिरे की वृत्तीय परिधि, 2πr1 = 18 cm ⇒ πr1 = 9 cm
दूसरे सिरे की वृत्तीय परिधि, 2πr2 = 6 cm ⇒ πr2 = 3 cm
छिन्नक का वक्र पृष्ठीय क्षेत्रफल = π(r1 + r2)l
= (πr1 + πr2)l
= (9 + 3) × 4
= 48 cm2
अतः छिन्नक का वक्र पृष्ठीय क्षेत्रफल = 48 cm2

प्रश्न 3) एक तुर्की टोपी शंकु के छिन्नक के आकार की है (चित्र देखिए)। यदि इसके खुले सिरे की त्रिज्या 10 cm है, ऊपरी सिरे की त्रिज्या 4 cm है और टोपी की तिर्यक ऊँचाई 15 cm है, तो इसके बनाने में प्रयुक्त पदार्थ का क्षेत्रफल ज्ञात कीजिए।

प्रश्न 4) धातु की चादर से बना और ऊपर से खुला एक बर्तन शंकु के एक छिन्नक के आकार का है, जिसकी ऊँचाई 16 cm है तथा निचले और ऊपरी सिरों की त्रिज्याएँ क्रमश 8 cm और 20 cm हैं।

₹ 20 प्रति लीटर की दर से, इस बर्तन को पूरा भर सकने वाले दूध का मूल्य ज्ञात कीजिए। साथ ही, इस बर्तन को बनाने के लिए प्रयुक्त धातु की चादर का मूल्य ₹ 8 प्रति 100 cm2 की दर से ज्ञात कीजिए। (π = 3.14 लीजिए)

हल)
दिया है, बर्तन शंकु के छिन्नक के आकार का है जिसकी ऊँचाई (h) =16 cm
और शंकु के ऊपरी सिरे की त्रिज्या (r1) = 20 cm तथा शंकु के निचले सिरे की त्रिज्या (r2) = 8 cm
तब, बर्तन का आयतन = छिन्नक का आयतन

तब, बर्तन का वक्रपृष्ठ = π(r1 + r2)l
= 3.14(20 + 8) × 20
= 3.14 × 28 × 20
= 1758.4 cm3
बर्तन में प्रयुक्त चादर का क्षेत्रफल = (1758.4 + 200.96) cm2 = 1959.36 cm2

प्रश्न 5) 20 cm ऊँचाई और शीर्ष कोण (vertical angle) 60° वाले एक शंकु को उसकी ऊँचाई के बीचो-बीच से होकर जाते हुए एक तल से दो भागों में काटा गया है, जबकि तल शंकु के आधार के समान्तर है। यदि इस प्राप्त शंकु के छिन्नक को व्यास 1/16 cm वाले एक तार के रूप में बदल दिया जाता है तो तार की लम्बाई ज्ञात कीजिए।

हल)

चित्र में किसी शंकु के आधार का व्यास A’OA है तथा शीर्ष V है।
शंकु का शीर्ष कोण A’VA = 60° है, तब शंकु का अर्द्धशीर्ष कोण (α) = 30°
शंकु की ऊँचाई = 20 cm है।
तब, समकोण ΔOAV में,

Leave a Comment